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Optically bound microscopic particles in one dimension
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Counterpropagating light fields have the ability to create self-organized one-dimensional optically bound
arrays of microscopic particles, where the light fields adapt to the particle locations and vice versa. We develop
a theoretical model to describe this situation and show good agreement with recent experimental data@Phys.
Rev. Lett.89, 128301~2002!# for two and three particles, if the scattering force is assumed to dominate the
axial trapping of the particles. The extension of these ideas to two- and three-dimensional optically bound
states is also discussed.
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I. INTRODUCTION

The ability of light to influence the kinetic motion of mi
croscopic and atomic matter has had a profound impac
the last three decades. The optical manipulation of ma
was first seriously studied by Ashkin and co-workers in
1970s@1–3#, and led ultimately to the demonstration of th
single beam gradient force trap@4#, referred to as optica
tweezers, where the gradient of an optical field can ind
dielectric particles of higher refractive index than their s
rounding medium to be trapped in three dimensions in
light field maxima@4#. Much of Ashkin’s early work cen-
tered not on gradient forces, but on the use of radiation p
sure to trap particles@1#, and a dual beam radiation pressu
trap was demonstrated in which a single particle was c
fined. This work ultimately contributed to the developme
of the magneto-optical trap for neutral atoms@5#.

Recently we observed one-dimensionalarrays of silica
spheres trapped in a dual beam radiation pressure trap@6#.
These arrays had an unusual property in that the parti
that formed the array were regularly spaced from each ot
The particles were redistributing the incident light fiel
which in turn redistributed the particle spacings, allowi
them to reside in equilibrium positions. This effect, known
‘‘optically bound matter’’ was first realized in a slightly dif
ferent context via a mechanism different from ours so
years ago@7,8# using a single laser beam and was explain
as the interaction of the coherently induced dipole mome
of microscopic spheres in an optical field creating bou
matter.

In the context of our study, optically bound matter is
interest as it relates to the way in which particles inter
with the light field in extended optical lattices, which ma
prove useful for the understanding of three-dimensional tr
ping of colloidal particles@9#. Indeed optically bound matte
may provide an attractive method for the creation of su
lattices, which is not possible using interference patte
Bound matter may also serve as a test bed for studie
atomic or ionic analogs to our microscopic system@10#.

Subsequent to our report, a similar observation was m
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in an experiment making use of a dual beam fiber trap@11#.
In this latter paper a theory was developed that exami
particles of approximately the same size as the laser wa
length involved. In this paper we develop a numerical mo
that allows us to simulate the equilibrium positions of tw
and three particles in a counterpropagating beam geom
where the particle sizes are larger than the laser wavelen
and fall outside the upper bound of the limits discussed
@11#. The model can readily be extended to look at larg
arrays of systems. We discuss the role of the scattering
refraction of light in the creation of arrays. In the next se
tion we describe the numerical model we use for our stud
and derive predictions for the separation of two and th
spheres of various sizes. We then compare this with b
previous and current experiments.

II. THEORY SECTION

Our model comprises two monochromatic laser fields
frequencyv counterpropagating along thez axis which in-
teract with a system ofN transparent dielectric spheres
massm, refractive indexns , and radiusR, with centers at
positions$rW j (t)%, j 51,2, . . . ,N, and which are immersed in
a host medium of refractive indexnh . The electric field is
written as

EW ~rW,t !5
ê

2
@~E1~rW !eikz1E2~rW !e2 ikz!e2 ivt1c.c.#, ~1!

whereê is the unit polarization vector of the field,E6(rW) are
the slowly varying electric field amplitudes of the right o
forward propagating (1) and left or backward propagatin
~2! fields, andk5nhv/c is the wave vector of the field in
the host medium. The incident fields are assumed to be
limated Gaussians at longitudinal coordinatesz52L/2 for
the forward field andz5L/2 for the backward field,

E1~x,y,z52L/2!5E2~x,y,z5L/2!

5A 4P0

nhce0pw0
2
e2r 2/w0

2
, ~2!
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wherer 25x21y2, w0 is the initial Gaussian spot size, an
P0 is the input power in each beam. It is assumed that all
spheres are contained between the beam waists within
lengthL@R.

Consider first that the dielectric spheres are in a fix
configuration at timet specified by the centers$rW j (t)%. Then
the dielectric spheres provide a spatially inhomogeneous
fractive index distribution which can be written in the form

n2~rW !5nh
21~ns

22nh
2!(

j 51

N

u„R2urW2rW j~ t !u…, ~3!

whereu„R2urW2rW j (t)u… is the Heaviside step function, whic
is unity within the sphere of radiusR centered onrW5rW j (t)
and zero outside, andns is the refractive index of the
spheres. Then, following standard approaches@12#, the coun-
terpropagating fields evolve according to the paraxial w
equations

6
]E6

]z
5

i

2k
¹'

2 E61 ik0

@n2~rW !2nh
2#

2nh
E6 , ~4!

along with the boundary conditions in Eq.~2!, where k0

5v/c and¹'
2 5]2/]x21]2/]y2 is the transverse Laplacia

describing beam diffraction. Thus, a given configuration
the dielectric spheres modifies the fieldsE6(rW) in a way that
can be calculated from the above field equations. We rem
that even though the spheres move, and hence so doe
refractive-index distribution, the fields will always be adi
batically slaved to the instantaneous sphere configuratio

To proceed, we need equations of motion for how
sphere centers$rW j (t)% move in reaction to the fields. Th
time-averaged dipole interaction energy@4#, relative to that
for a homogeneous dielectric medium of refractive indexnh ,
between the counterpropagating fields and the system
spheres is given by

U~rW1 , . . . ,rWN!5E dVe0@n2~rW !2nh
2#^EW 2&

52
e0

4
~ns

22nh
2!(

j 51

N E dVu

3„R2urW2rW j~ t !u…@ uE1~rW !u21uE2~rW !u2#,

~5!

where the angular brackets signify a time average which
stroys fast-varying components at 2v. The most important
concept is that the dipole interaction potential depends on
spatial configuration of the spheresU(rW1 , . . . ,rWN) since the
counterpropagating fields themselves depend on the sp
distribution via the paraxial wave equations~4!. This form of
the dipole interaction potential~5! shows explicitly that we
pick up a contribution from each sphere labeledj via its
interaction with the local intensity. Assuming overdamp
motion of the spheres in the host medium with visco
damping coefficientg, the equation of motion for the spher
centers becomes
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dr jW

dt
5FW grad, j1FW scatt, j , FW grad, j52“ jU~rW1 , . . . ,rWN!,

~6!

where“ j signifies a gradient with respect torW j , andFW grad, j

andFW scatt, j are the gradient and the scattering forces exp
enced by thej th sphere, for the latter of which we shall giv
an expression below.

Carrying through simulations for a three-dimension
~3D! system with modeling of the electromagnetic propag
tion in the presence of many spheres poses a formid
challenge, so here we take advantage of the symmetry o
system to reduce the calculation involved. First, for the
lindrically symmetric Gaussian input beams used here
assume that the combination of the dipole interaction pot
tial, and associated gradient force, and the scattering fo
supplies a strong enough transverse confining potential
the sphere motion remains directed along thez axis. This
means that the positions of the sphere centers are loc
along thez axis, rW j (t)5 ẑzj (t), and that the gradient an
scattering forces are also directed along thez axis FW j
5 ẑF j . Second, we assume that the sphere distribution al
the z axis is symmetric aroundz50, the beam foci being a
z56L/2. This means, for example, that for one sphere
center is located atz50, for two spheres the centers a
located atz56D/2, D being the sphere separation distanc
and for three spheres the centers are atz50,6D. For three
or fewer spheres the symmetric configuration of sphere
captured by the sphere spacingD, and we shall consider this
case here. For more than three spheres the situation bec
more complicated and we confine our discussion to the s
plest cases of two and three spheres.

With the above approximations in mind the equations
motion for the sphere centers become

g
dzj

dt
5Fgrad, j1Fscatt, j , j 51,2, . . . ,N. ~7!

At this point it is advantageous to consider the case of t
spheres,N52, to illustrate how calculations are performe
For a given distanceD between the spheres we calculate t
counterpropagating fields betweenz5@0,L# using the beam
propagation method. From the fields we can numerically c
culate the dipole interaction energyU(D) for a given sphere
separation, and the resulting axial (z-directed! gradient force
is thenFgrad(D)52]U/]D. Thus, by calculating the coun
terpropagating fields for a variety of sphere separations
can numerically calculate the gradient force which acts
the relative coordinate of the two spheres. For our system
approximate the scattering force@13# along the positivez
axis for thej th sphere as

Fscatt, j'S nh

c D S s

pR2D E0

R

2prdr
e0nhc

2
@ uE1~x,y,zj !u2

2uE2~x,y,zj !u2#, ~8!
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with s the scattering cross section. This formula is motiva
by the generic relationFscatt5nhPscatt/c for unidirectional
propagation, with the scattered powerPscatt5sI 0, and I 0
the incident intensity. The integral yields the difference
power between the two counterpropagating beams integr
over the sphere cross section, and when this is divided by
sphere cross-sectional areapR2 we get the averaged inten
sity difference over the spheres. For the case of two sph
we calculate the scattering forceFscatt(D), evaluated at the
position of the sphere atz5D/2, and for a variety of sphere
spacingsD. A similar procedure can readily be applied to t
case of three spheres.

The theory described above has some limitations that
now discuss. First, we assume that the spheres are trapp
axis by a combination of the scattering and/or dipole for
acting transverse to the propagation axis. For this to be p
sible we require that the sphere diameter be less than
laser beam diameter 2w0.D. Furthermore, we have as
sumed paraxial propagation which neglects any large a
or backscattering of the laser fields. However, when ligh
incident on a sphere of diameterD there is an associate
wave vector uncertaintyDKD.2p, and whenDK.2k
backscattering can occur, as it is within the uncertainty t
an incident wave of wave vectork along a given direction is
converted into2k. This yields the conditionD.l/2nh ,
with l the free-space wavelength, to avoid backscatter
and so that our paraxial assumptions are obeyed.

Our goal is to examine the axial gradient and scatter
forces for an array of two and three spheres and comp
with the experimental results. However, the scattering cr
section for our spheres, which incorporates all sources
scattering in a phenomenological manner, cannot be ca
lated with any certainty. Our approach, therefore, will be
calculate the equilibrium sphere separationF(D)50 for the
gradient and scattering forces separately, which does no
pend on the value of the cross section, and compare
calculated sphere separations with the experimental val
By comparing the theoretical predictions with the experim
for N52,3, we can determine the dominant source of
axial force acting on the spheres.

III. EXPERIMENT

To compare our theory with experiment we use data fr
our previous work@6# and also recreate that experiment, b
using a different laser wavelength and particle sphere s
The previously reported experiment@6# makes use of a
continuous-wave 780 nm Ti:sapphire laser, which is split i
two beams with approximately equal power~25 mW! in each
arm. Each of the beams is focused down to a spot wit
3.5 mm beam waist and then passed, counterpropaga
through a cuvette with dimensions of 5 mm35 mm320 mm.
The beam waists were separated by a finite amount, whic
discussed further below. Uniform silica spheres with a 3mm
diameter~Bangs Laboratories, Inc! in a water solution were
placed in the cuvette, and the interaction of the beams w
the sample caused one-dimensional arrays of particles t
formed. The refractive index of the spheres is approxima
1.43. We also carried out a similar experiment using a 1
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nm neodymium-doped yttrium aluminum garnet~Nd:YAG!
laser where the beam waists were 4.3mm and we used 2.3
mm diameter spheres. The particles were viewed by look
at the scattered light orthogonal to the laser beam propa
tion direction viewed on a charge-coupled device cam
with an attached microscope objective~320, numerical ap-
erture 0.4, Newport!.

To compare our theory with experimental results, we ne
to concentrate on a small number of parameters, the sp
size, the beam waist, the refractive index of the spheres,
the beam waist separation. We know the particle sizes
can make a good estimate as to their refractive index; furt
we can measure the beam waist to a high degree of accu
The only problematic factor is the beam waist separati
Due to experimental constraints, this is quite difficult to me
sure. We estimate the waist separation by filling the cuve
with a high density particle solution and looking at the sc
tered light from the sample. The high density of particl
allows us to map out the intensity pattern of the two bea
and hence make an estimate as to the waist separation.
is, however, an inaccurate method and leaves us with
error of more than 100%. We therefore use our model to h
us fix the beam waist separation on a single result and t
examine the behavior of the model when varying other
rameters. The error in the beam waist separation is no
extreme as it first sounds however. Modeling the system
a range of beam waist separations from 80mm to 200mm
results in a predicted range of sphere separations as show
Fig. 1 for 2.3 mm diameter spheres. We see that althou
initially the beam waist separation difference makes a r
sonable difference to the predicted sphere separation th
gion that we believe we are working in,;180 mm waist
separation, is relatively flat. Therefore, even if we do hav
large error in this value, the predicted result does not v
significantly. This increases our confidence that we have
correct beam waist separation with a higher uncertainty t

FIG. 1. Sphere separation as a function of beam waist separa
for two 2.3mm spheres. The rate of change of sphere separatio
seen to drop off as the waist separation increases. The fit to a
rabola is to aid the eye, rather than to suggest a quantitative
tionship.
3-3
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our experimental measurements of this parameter sugge
We begin by examining the case of the 2.3mm diameter

spheres.

A. 2.3 mm diameter spheres

We consider the case for chains of both two and th
spheres. For two spheres we measure a sphere separat
34 mm, for a beam waistv054.3 mm at a laser wavelength
l51064 nm. Using a beam waist separation of 180mm our
model predicts an equilibrium in the scattering force of
mm, as is shown in Fig. 2. The intensity in thex2z plane for
this configuration is shown in Fig. 3. We see no such eq
librium in the gradient force, shown in Fig. 4, and conclu
that the scattering force is the dominant factor in this
stance. Using the same parameters for the three-sphere
gives us a sphere separation prediction of 62mm, as shown
in Fig. 5. Again this dominates over the gradient force, t

FIG. 2. Scattering force on two 2.3mm diameter silica sphere
with the beam waists 180mm apart.v053.5 mm andl51064 nm.

FIG. 3. ~Color online! Intensity plot in thex-z plane for the case
of two 2.3mm diameter silica spheres with the beam waists 180mm
apart.v053.5 mm andl51064 nm.
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assumption being valid, as the theory gives a good predic
of our experimental observations. Our experimental resu
57 mm, but we estimate our model value falls within th
standard deviation of our experimental measurements.

B. 3 mm diameter spheres

The data for 3mm spheres obtained at a different wav
length from the 2.3mm data~l5780 nm! also fit well with
our theory. For two spheres, with the beam waists 150mm
apart, we predict a sphere separation of 47mm ~Fig. 6! while
our experiment predicts a distance of 45mm. Using the same
parameters for the three-sphere case, we predict a sp
separation of 37mm ~Fig. 7!, while our experiment shows a
separation of 35mm. Again, as we predict equilibrium pos
tions with the scattering force component, but not with t
gradient force component, we conclude that the scatte
force is the dominant factor in determining the final sphe
separations.

FIG. 4. Gradient force on two 2.3mm diameter silica sphere
with the beam waists 180mm apart.v053.5 mm andl51064 nm.

FIG. 5. Scattering force on three 2.3mm diameter silica sphere
with the beam waists 180mm apart.v053.5 mm andl51064 nm.
The plot shows the separation between two of the three spheres
the scattering forces are symmetric about the center sphere.
3-4
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IV. DISCUSSION AND CONCLUSIONS

Our model accurately predicts separations for the case
two and three spheres, at certain sizes. However, we
performed experiments using 1mm diameter spheres an
could not find any agreement between experiment
theory. Since our model uses a paraxial approximation,
assumption is that in these smaller size regimes the m
breaks down. This in contrast to the work detailed in@11#,
which works in size regimes closer to the laser wavelengtl,
and begins to break down in the larger size regimesD
.2l), whereD is the sphere diameter.

We also note that the beam separation distance beco
less critical as it becomes larger. For small beam waist se

FIG. 6. Scattering force on two 3mm diameter silica sphere
with the beam waists 150mm apart.v054.3 mm andl5780 nm.

FIG. 7. Scattering force on three 3mm diameter silica sphere
with the beam waists 150mm apart.v054.3 mm andl5780 nm.
The plot shows the separation between two of the three spheres
the scattering forces are symmetric about the center sphere.
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ration distances (l !80 mm, say!, any change in this param
eter leads to a sharp change in the sphere separation dist
whereas at the waist separation distances we work at
change in sphere separation distance is far more gentle,
hence gives rise to less uncertainty over exact fits betw
theory and experiment. The other main parameter is sph
size, which has an appreciable effect on the predicted sp
separation. The incident power on the spheres does not m
much of a difference and is more of a scaling factor in t
forces involved rather than a direct modifier in the mod
Predicted sphere separation is also sensitive to the refrac
index difference between the spheres and the surroun
medium, so it is important that the spheres’ refractive ind
is well known.

It should also be possible to create two-dimensional a
possibly three-dimensional arrays from optically bound m
ter. The extension to two dimensions is relatively simple
envisage with the use of multiple pairs of counterpropagat
laser beams. In three dimensions the formation of such o
cally bound arrays may circumvent some of the proble
associated with loading of three-dimensional optical lattic
@9#. It is often assumed that the creation of an optical latt
~via multibeam interference, say! will allow the simple, un-
ambiguous trapping of particles in all the lattice site
thereby making an extended three-dimensional array of
ticles. Such arrays may be useful for crystal template form
tion @9# and in studies of crystallization processes@14,15#.
However, crystal formation in this manner is not particula
robust in that as the array is filled the particles perturb
propagating light field such that they prevent the trap s
below them being efficiently filled. Arrays of optically boun
matter do not suffer from such problems, as they are or
nized as a result of the perturbation of the propagating fie
Further, the fact that the particles are bound together p
vides more realistic opportunities for studying crystal a
colloidal behavior than in unbound optically generated
rays, such as those produced holographically@14,16,17#.

We have developed a model by which the propagation
counterpropagating laser beams moving past an array
silica spheres may be examined. Analysis of the result
forces on the spheres allows us to predict the separatio
the spheres that constitute the array. We have compared
model with experimental results for different beam para
eters ~wavelength, waist separation, waist diameter! and
found the results to be in good agreement with our obse
tions. The model, however does not, work with sphere si
much less than approximately twice the laser waveleng
Our model is readily extendable to a larger number
spheres and will be of great use in the study of such one-
higher-dimensional arrays of optically bound matter.
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